
NASA/TM–2009–000000

From Verified Models to Verifiable
Code

Leonard Lensink
L.Lensink@cs.ru.nl

Radboud University Nijmegen, The Netherlands

César Muñoz
cesar.a.munoz@nasa.gov

NASA Langley Research Center, Hampton, Virginia, USA

Alwyn Goodloe
Alwyn.Goodloe@nianet.org

National Institute of Aerospace, Hampton, Virginia, USA

June 2009

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA scientific and technical
information (STI) program plays a key part
in helping NASA maintain this important
role.

The NASA STI Program operates under the
auspices of the Agency Chief Information
Officer. It collects, organizes, provides for
archiving, and disseminates NASA’s STI.
The NASA STI Program provides access to
the NASA Aeronautics and Space Database
and its public interface, the NASA Technical
Report Server, thus providing one of the
largest collection of aeronautical and space
science STI in the world. Results are
published in both non-NASA channels and
by NASA in the NASA STI Report Series,
which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed to
be of continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript length
and extent of graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest, e.g.,
quick release reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services also include creating
custom thesauri, building customized
databases, and organizing and publishing
research results.

For more information about the NASA STI
Program, see the following:

• Access the NASA STI program home page
at http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA STI Help
Desk at 443-757-5803

• Phone the NASA STI Help Desk at
443-757-5802

• Write to:
NASA STI Help Desk
NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076–1320

NASA/TM–2009–000000

From Verified Models to Verifiable
Code

Leonard Lensink
L.Lensink@cs.ru.nl

Radboud University Nijmegen, The Netherlands

César Muñoz
cesar.a.munoz@nasa.gov

NASA Langley Research Center, Hampton, Virginia, USA

Alwyn Goodloe
Alwyn.Goodloe@nianet.org

National Institute of Aerospace, Hampton, Virginia, USA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

June 2009

Acknowledgments

This work was supported by the National Aeronautics and Space Administration at Langley
Research Center under NASA’s Exploration Technology Development Program (ETDP),
Cooperative Agreement NCC-1-02043, and NASA’s Integrated Vehicle Health Management
(IVHM) project, Cooperative Agreement NNX08AE37A. The authors would like to thank all the
reviewers and, specially, Kurt Woodham from NASA, for their valuable comments on earlier
versions of this paper.

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an offical endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive

Hanover, MD 21076-1320
443-757-5802

Abstract

Declarative specifications of digital systems often contain parts that can be auto-
matically translated into executable code. Automated code generation may reduce
or eliminate the kinds of errors typically introduced through manual code writing.
For this approach to be effective, the generated code should be reasonably efficient
and, more importantly, verifiable. This paper presents a prototype code genera-
tor for the Prototype Verification System (PVS) that translates a subset of PVS
functional specifications into an intermediate language and subsequently to multi-
ple target programming languages. Several case studies are presented to illustrate
the tool’s functionality. The generated code can be analyzed by software verifica-
tion tools such as verification condition generators, static analyzers, and software
model-checkers to increase the confidence that the generated code is correct.

1 Introduction

Complex critical systems [38] such as fault-tolerant avionics and air traffic manage-
ment systems pose particular challenges due to the potential loss of life that could
incur from a failure. Safety guarantees for such systems require explicit evidence
that the systems are sound with respect to their safety requirements – a task that
is typically beyond the scope of traditional testing techniques or model checking.
NASA has been applying heavyweight formal methods to such problems for many
years. Specifically, NASA Langley Research Center has used the Prototype Ver-
ification System (PVS) [31] to model and mechanically prove that these models
satisfy safety properties such correctness [27, 28], and completeness properties such
as validity and agreement [25,35]. Scientists at the National Institute of Aerospace
(NIA) and NASA LaRC have also invested eight years of research in designing for-
mally verified algorithms for air traffic conflict detection and resolution [6, 8, 9]. In
total, the number of PVS theorems proved at LaRC now numbers in the thousands.
Once these properties are verified, the models are implemented using traditional
imperative programming languages. An improvement to this scenario would be to
automatically generate code and formal assertions from the formally verified mod-
els. This way, the possibility that errors are introduced during the coding phase is
reduced. This will also enable the use of verification condition generators or other
software verification tools to check that the generated code correctly implements the
specified algorithm.

Generally, two different techniques are employed for generating code from formal
specifications. The first technique uses the Curry-Howard isomorphism to extract
programs from constructive proofs [24, 34]. The second technique translates the
original specification into code assuming that the specification is restricted to a
pseudo-executable subset of the specification language [1, 18, 40, 43]. The latter
technique is particularly appealing for generating code from specifications written in
declarative languages, such as PVS and ACL2 [19], since these languages encourage
writing specifications in a style that is in large part functional, which supports
relatively easy transition to an executable form. Indeed, specifications in ACL2 can

1

be compiled and run natively in a Common Lisp environment. Furthermore, in the
absence of constructive proofs, the second technique is usually the only option.

In this paper, a prototype generator of annotated code for declarative spec-
ifications written in PVS is presented. The prototype is electronically available
from http://research.nianet.org/fm-at-nia/PERICO/. Currently, the proto-
type generates Java code with assertions written in JML [5]. The code generator uses
an intermediate language which supports translation to other target programming
languages.

The remainder of the paper is structured as follows. Section 2 presents an
overview of the translation process. Section 3 describes the more challenging aspects
of the translation. Section 4 gives an overview of several case studies where the tool
has been applied to generate Java code from PVS specifications. Finally, the last
section discusses related work and concludes.

2 From PVS to Java and Back Again

The input to the code generator is a declarative specification written in PVS, a
higher order logic specification language and theorem prover. Since this work aims
at a wide range of applications, the target language is not fixed. Indeed, the tool
first generates code in Why, an intermediary language for program verification [12].
The current prototype generates Java annotated code from the Why code. In the
future, the generator may be extended to support other functional and imperative
programming languages.

Another benefit of an intermediate language is that transformations and analysis
that are independent from the target language, such as tail-recursion elimination
and shared memory analysis, can be directly applied to the intermediate code. This
allows optimizations to be performed only once that otherwise might have to be
performed for every target language. Furthermore, the code generator exports Why
code into XML. This insulates the developer of the translation to a specific target
language from the internals of the generator or having to write a custom parser.
XML parsers are readily available for most modern programming languages.

In order to increase confidence in the generated code, the generator annotates
the code with logical assertions such as pre-conditions, post-conditions, and invari-
ants. These assertions are extracted from the declarations, definitions, and lemmas
in the formal model. Therefore, the generated code can be the input of a verification
condition generator such as Krakatoa [11]. Krakatoa generates proof obligations for
several theorem provers, including PVS. The generated PVS proof obligations are
different from the original PVS specification. However, if the original specifica-
tion has been shown to be correct, discharging the proof obligations is a relatively
easy task. The annotated code is also amenable to static analysis, software model
checking, and automated test generation.

The proposed approach is illustrated by Figure 1, where the dashed line encloses
the functionality currently implemented in the prototype. The rest of this section
gives a short overview of PVS and Why.

2

PVS specification

PVS2Why

Why2XML

XML representation
Why program XML2C

XMLWhy2...

Why program

XML2Java

(Annotated)
C program

(Annotated)
Java program

Krakatoa Caduceus

Other languages

Figure 1. Multi-target generation of verifiable code

2.1 PVS

PVS is an interactive environment for writing formal specifications and for check-
ing proofs. It contains an expressive specification language and a powerful theorem
prover. It has been applied to large applications both in academic as well as indus-
trial settings [32].

The specification language is based on classical higher order logic, augmented
with a sophisticated type system that uses predicate subtypes and dependent types.
It also has the capability to define algebraic data types. All functions that are
defined in the specification language must be total, i.e., functions must be defined
for all the input values. However, partial functions can be defined by restricting the
domain of the function to a subtype using predicate subtyping. The many features of
the PVS type system make it very powerful, but also make type checking in general
undecidable. The theorem prover generates type correctness conditions (TCC’s) for
the undecidable parts of the type checking process. In practice, most of the TCC’s
are automatically discharged by the system.

The theorem prover is used either interactively or in batch mode. The basic
deductive steps range from small inferences to use of decision procedures for, among
others, arithmetic reasoning and propositional simplification. Using a scripting lan-
guage, these basic steps can be built into larger procedures. The proof checker
manages the proof construction by asking the user to supply a proof command that
will either prove the current goal or generate one or more new goals. Once all goals
have been reached, the theorem is considered proven.

2.2 Why

Why is a multi-target verification condition generator developed by Filliâtre et
al. [10, 13]. The Why tool generates proof obligations for different kinds of ex-

3

isting proof tools, including proof assistants such as PVS but also automated first
order theorem provers and SMT solvers.

Why builds a functional interpretation of the imperative program given as input.
This interpretation contains both a computational and a logical part. Using this
information, the tool applies a Hoare logic and Dijkstra’s calculus of weakest pre-
conditions to generate proof obligations. Why’s input language, which is also called
Why, is based on Milner’s ML programming language and has imperative features,
such as references and exceptions, and functional features, such as higher-order
functions. In contrast to ML, aliasing between mutable variables is not allowed.
This constraint is guaranteed by the typing rules of the Why language [10].

The Why tool is used as the back-end of verification condition generators. In-
deed, the same team that develops Why also develops the tools Krakatoa and Ca-
duceus, which are front-ends for Java and C verification condition generators, re-
spectively.

3 Code Generation

For the most part, the translation from a declarative PVS specification into the
Why language is straightforward. Each language construct in the functional subset
of the PVS specification language has an almost immediate counterpart in the Why
language. Indeed, like PVS, Why can be used as a purely functional programming
language.

In order to ease the translation, the Why language has been extended with
several features such records, tuples, and a simple notion of modules. Although
records and tuples could be defined in the logic part of the language, they have been
added as syntactic sugar and treated similarly to arrays. Modules provide a naming
scope for a set of Why declarations. They correspond directly to the parameterized
theories in PVS and allow for modularity in the generated programs. A more general
notion of module that includes the notion of interface is currently being added to
the Why core language [42].

An important difference between the PVS and the Why logical frameworks is
that Why distinguishes between logical and computational values. For example, the
PVS code

is_square(x ,y:real):bool = (y*y=x)

defines a function that returns true when the second argument is the square root of
the first argument. That function can be translated into Why as a proposition:

predicate is_square(x:real,y:real) = (y*y=x)

which can be used in logical assertions, or it can be translated as a program:

let is_square(x:real,y:real):bool
y*y=x ;

which can be used in other programs. The same distinction applies to general func-
tions that can be defined as logical functions, to be used in propositions, or as
programs. Since the set of propositions and programs is disjoint, e.g., propositions

4

cannot appear in programs and programs cannot appear in propositions, the ap-
propriate Why code has to be generated based on how PVS expressions are being
used in the formal model. Section 3.1 discusses which parts of PVS specifications
are used to generate logical assertions.

One of the main concerns in generating code from a declarative specification is
the efficiency of the resulting program. Purely functional programs may be ineffi-
cient. The obvious difference between PVS and Why is that Why supports impera-
tive features such as references and side effects. The efficiency of the generated Why
code could be significantly improved if some PVS constructs are translated into im-
perative Why code. For instance, PVS supports record and array overriding, if A is
an array of integer values, the PVS expression A WITH [(0) := 10] denotes an ar-
ray that is equivalent to A in all indices except 0 where it has the value 10. Because
Why destructive updates are more efficient that PVS overriding, it is particularly
tempting to translate the PVS overriding feature with Why statements such as A[0]
:= 10. Here, the index 0 of the array A is set to 10. Why destructive updates are
more efficient than PVS overriding. However, as it will be seen in Section 3.2, a
careful analysis has to be performed to guarantee the correctness of this translation.

The last step is the translation of Why programs into the target language. Except
for higher-order functions, all the constructs in the Why language can be directly
translated into most modern programming languages. Also needing definition is
a process for integrating the generated code with existing code. The solution to
these two processes is highly dependent on the target language. As an example,
Section 3.3 discusses how higher order functions and code integration are supported
in the generation of Java code.

3.1 Assertions

The predicate subtyping capability of PVS allows for the precise specification of
functions equivalent to pre-conditions and post-conditions in traditional Hoare logic-
based specification languages [37]. For instance, the square root function in PVS
can declared:

sqrt(x:real | x ≥ 0) : {y:real | y ≥ 0∧ x = y*y}

This declaration states that sqrt is a function that takes a non-negative real x and
returns a non-negative real y such that x=y*y.

The PVS to Why generator uses the type information of PVS declarations to
extract pre-conditions and post-conditions for the Why version of these declarations.
In the particular case of recursive declarations, the type of the arguments are ex-
tracted as invariants, and the measure information is extracted as the termination
argument. Furthermore, functions used in type definitions are extracted as logic
functions rather than programs. This overcomes the Why restriction on the use of
programs in logical statements.

The Why language does not have the means to specify proofs, but allows for the
specification of axioms used by automated theorem provers to discharge the proof
obligations. All lemmas and TCC’s are translated into axioms in the Why logic.

5

3.2 Destructive Updates

The PVS ground evaluator includes a highly efficient code generator that translates
PVS expressions into Lisp [39]. In the generated Lisp code, a PVS overriding ex-
pression is translated into two variants: one that destructively updates the data
structure and one that constructs a new copy. If it is not possible to alias the vari-
able being overridden, the destructive version is chosen; if there is a risk of aliasing,
the safe version that makes a copy is used. The alias analysis performed by the
PVS ground evaluator is made difficult or even impossible by nested application
and higher-order functions. Consequently, the approach applied by the evaluator is
conservative in that it applies the safe version if the alias evaluation is infeasible.

Take for instance the following PVS function that negates each element of an
array of 1000 elements:

Arr : TYPE = ARRAY[below(1000) → int]
negate(A:Arr,i:below(1000)) : RECURSIVE Arr =

IF i=0 THEN A
ELSE negate(A WITH [(i-1) := -A(i-1)] ,i-1)
ENDIF

MEASURE i

The destructive update of the array A can be done safely because the update of
element i-1 is done after the value of the element has been read and there is no
reference to i-1 afterward. If the update is done non-destructively, an array copy
would have to be performed 1000 times with significant performance results. As
it is not always possible to use the destructively updating variant of the function
negate, the translator generates a destructive and a non-destructive version of each
function that updates a variable. For instance, if the function negate is used in a
situation where the negated array is referenced later, i.e. foo(negate(A),A), the
version of negate function that employs the non destructive update is used.

The translation from PVS to Why uses a similar mechanism as the PVS ground
evaluator. However, due to the aliasing exclusion mechanism built into the type
system of Why, it is impossible to translate functions that perform array updates
into a non-destructive and destructive version of the same function. Instead, a
destructive variant of every function is generated. If the alias analysis determines
that a particular variable cannot be destructively updated, a deep copy of this
variable is created before performing any destructive update. Hence, computations
are safely performed without destroying the initial object and avoiding the possible
introduction of aliasing. The function call foo(negate(A),A) is translated into B
= A.copy; foo(negate(B),A).

3.3 Java

Several techniques have been proposed to provide support for higher-order functions
in Java. In this work, a special class Lambda that encodes closures as objects is used.
Then, every function in Why is translated into a Java function and a static object of
type Lambda that encodes the curryfied closure of the function. Overloading allows
for the use of the same name for the Java function and for its closure.

6

Inheritance and abstract classes are used to enable the integration of the gener-
ated code with existing code. This is particularly useful when a given function is
uninterpreted in the original specification. Take for example the case of the square
root function in PVS. Since a constructive version of this function is not available,
this function and the class where it appears are declared as abstract in Java. This
means that the program that invokes the generated code must provide a concrete
sqrt function in order to execute the code. Since the pre-conditions and post-
conditions of sqrt are still generated, Krakatoa, or any other verification condition
generator for Java, should generate proof obligations that guarantee the provided
function satisfies the specification of the uninterpreted one. For example, the sqrt
function is translated into the following JML annotated Java code:

//@ requ i r e s x >= 0
//@ ensures \ r e s u l t >= 0 AND x = \ r e s u l t ∗ \ r e s u l t
public abstract float sqrt(final float x) ;

3.4 Example

In order to illustrate some of the more specific properties of the translation from
PVS to Java, the translation of a small part of the consensus protocol example given
in Section 4.3 is shown.

Several actions are defined in the specification of this protocol that can happen in
the model. These are captured using an abstract datatype in PVS. In this datatype,
both constructors and recognizers are defined. PVS creates functions for these
definitions that can be used in any expression and also creates accessor functions
that will return the parameter used in construction.

Actions : DATATYPE

BEGIN

Good : Good?
Garbled : Garbled?
Sym(frame:Frame) : Sym?
Asym(frame:Frame): Asym?

END Actions

All specifications and lemmas are defined inside what PVS calls a theory. Theo-
ries are analogous to modules in a programming language and translate into classes
in an object-oriented language. The datatype Actions is defined inside the theory
ReceiveAction and translated into a Java class.

The abstract datatype Frame is defined in a different theory parameterized by a
type variable Data. The notion of parameterized theories is captured in the trans-
lation by generic class declarations.

Each of the different actions becomes a subclass that extends the class Actions
and has a constructor that takes the generic class Frame as an argument.

public class ReceiveAction <Data> {
public class Actions { public Actions () {}}
public class Sym extends Actions {

FrameTh<Data>.Frame frame ;

7

public Sym(FrameTh<Data>.Frame frame) {
this .frame = frame ; } }

The acccessors and recognizers that are implicitly defined in the PVS theory are
explicitly added to the Java code. Note that it is impossible to use the instanceof
operator: in order to make generic types work on existing JVM architectures, all
the generic type information is destroyed when compiling to byte code.

public FrameTh<Data>.Frame SymAccessor(Sym sym) {
return sym .frame ; }

public boolean SymRecognizer(Actions actions) {
return actions . getClass () . getName () . equals("Sym") ; }

The higher order use of defined functions is facilitated by a special Lambda class.
This generic abstract class demands that an application function is supplied for each
instance.

public abstract class Lambda<T1 ,T2> {
abstract public T2 apply(T1 obj) ; }

For all defined functions in PVS, a higher order version is generated that satisfies
the requirements of the Lambda class.

public Lambda<Actions ,Boolean> SymRecognizer =
new Lambda<Actions ,Boolean>() {
public Boolean apply(final Actions actions) {

return SymRecognizer(actions) ; } } ; }

All functions are translated in a currified version. This way it is possible to
translate all higher order uses of functions, including partial application into working
Java programs.

4 Case Studies

In this section, three case studies are briefly presented where the PVS to JAVA tool
has been used by NASA to create executable prototypes from a PVS specification.
The first case study is of an algorithm intended for use in air-traffic management,
the second is a sliding-window protocol, and the third is a Byzantine consensus
algorithm.

4.1 KB3D

KB3D [8] is a pair-wise conflict detection and resolution (CD&R) algorithm devel-
oped at the former research institute ICASE at NASA Langley Research Center.
The input to KB3D is the position and velocity vectors of two aircraft. KB3D distin-
guishes the host aircraft as the ownship and the traffic aircraft as the intruder. The
output is a list of resolution maneuvers for the ownship. The maneuvers computed
by KB3D are new velocity vectors that involve the modification of a single parameter
of the ownships original flight path: vertical speed, track, or ground speed. KB3D
is not computationally intensive and suitable for distributed airborne deployment.

KB3D is characterized by the following features:

8

• Distributed: Each aircraft solves its own conflicts with respect to traffic air-
craft.

• Three dimensional: It proposes horizontal and vertical resolutions.

• State-based: It solves conflicts based only on the state information of each
aircraft, i.e., current position and velocity vector.

• Tactical: It uses a short lookahead time, typically 5 minutes or less.

• Geometric: It finds analytical solutions, in a Cartesian coordinate system,
assuming linear trajectory projections of current aircraft states.

The mathematical properties of KB3D have been extensively studied and formalized
in PVS.

Code generation for KB3D

For this experiment, only the conflict detection algorithm of KB3D, namely cd3d, is
considered. This algorithm is a relatively simple, but critical, component of KB3D.
The Java code generated for cd3d serves as a reference implementation that can
be used to reduce the chance of inadvertently introducing errors. Take for instance
part of the original PVS specification:

cd3d(sx ,sy ,sz ,vx ,vy ,vz ,D ,H ,T) : bool =
IF vx=0∧ vy=0∧ sq(sx)+sq(sy) < sq(D) THEN

(abs(sz) < H) OR

(vz*vz < 0∧ -H < sign(vz)*T*vz + sz)
ELSE
ENDIF

The first manually coded version of cd3d, which was programmed before the
code generation for PVS was developed, contained an error in the implementation.
At some point in the algorithm, a “≤” symbol was used instead of the original “<”
symbol of the specification:

public boolean cd3d(
double sx , double sy , double sz ,
double vx , double vy , double vz ,
double D , double H , double T) {

i f (vx==0 && vy==0 && Util .sq(sx)+Util .sq(sy) < Util .sq(D)) {
return
Util .abs(sz) < H | |
(vz∗sz <= 0 && −H <= Util .sign(vz)∗T∗vz + sz) ;

This did not make the implementation of cd3d incorrect, but it did mean that the
algorithm was no longer complete. Of course, the mechanically translated reference
implementation does not contain this error.

9

4.2 Sliding-Window Protocol

AirSTAR [2] is a dynamically scaled experimental aircraft designed and built by
NASA’s Langley Research Center (LaRC) for use as a testbed for research on soft-
ware health management and flight control. The AirSTAR team commissioned two
of the authors to study a small protocol that provides a guarantee of eventual mes-
sage delivery, but would be simpler, and more verifiable than say User Datagram
Protocol (UDP)/Transmission Control Protocol (TCP), which are considered to be
too complex to be used in AirSTAR. This procotol is called the Guaranteed Deliv-
ery Protocol (GDP). Following the standard solution to this problem, GDP [29] is
designed as a sliding-window protocol with block acknowledgment [14,15]. A formal
specification of the protocol was written in PVS.

In addition to the formal specification of the protocol and its correctness proofs,
a reference implementation was developed.

Code generation for AirSTAR

The main challenge in generating code for the AirSTAR model was the use of pa-
rameterized (generic) theories, abstract datatypes, and higher order functions in the
PVS specification.

As shown in Section 3.4, the use of Java generics makes it possible to refrain
from having to generate Java classes for each particular instance of the parameterized
theory.

Higher-order functions were mainly used in the Ether part of the model, where
bags are used to represent the physical layer holding or duplicating frames during
transit. In PVS, bags are represented by functions that return the number of the
same frame present in the physical layer.

bag: TYPE = [LinkFrame → nat]
emptybag : bag = (λ (t:LinkFrame): 0)
insert(x:LinkFrame,b:bag) : bag =

(λ (t:LinkFrame): IF x = t THEN b(t) + 1 ELSE b(t) ENDIF)

Functions over a finite type are represented as arrays. However, LinkFrame is
not a finite type, therefore a higher order representation is generated using the same
class Lambda as defined in Section 3.4.
public int emptybag(final LinkInterfaceTheory . LinkFrame t) {
return 0; }

public Lambda<LinkInterfaceTheory .LinkFrame ,Integer>
insert(final LinkInterfaceTheory . LinkFrame x ,

final Lambda<LinkInterfaceTheory .LinkFrame ,Integer> b) {
return new Lambda<LinkInterfaceTheory .LinkFrame ,Integer>() {

public Integer curry(final LinkInterfaceTheory . LinkFrame t) {
return (x == t ? b .curry(t)+1 : b .curry(t)) ; } } ; }

4.3 Fault-Tolerant Consensus

Verification and validation (V&V) of distributed fault-tolerant systems is a contin-
uing challenge for safety-critical systems. A combination of technologies to provide

10

V&V support for these distributed fault-tolerant algorithms needs to be explored.
The aims of this case study is to investigate ways to aide test engineers by gen-
erating test cases that exercise the system under fault models used during formal
analysis. The process involves applying the PVS to Java translator to a PVS model
and then using Symbolic Java PathFinder (SJPF) [33] to generate test cases from
the Java code. SJPF has the capacity to generate test cases using symbolic execu-
tion techniques, in particular: lazy initialization, to create symbolic data that acts
as input instead of concrete data. Symbolic execution produces a structure that en-
codes constraints on the data fields and an execution path condition. Off-the-shelf
constraint solvers are then used to generate the concrete structures that are input
to the program. As an example, this process has been applied to a simple variant of
the oral-messages Byzantine consensus protocol [22]. A PVS model of the protocol
is then analyzed to show validity and agreement. Applying the translator, a Java
program that can then be analyzed by SJPF was obtained.

Code generation for Fault-Tolerant Consensus

The PVS specification of the Byzantine protocol employs most of the language
constructs used in the sliding window protocol: theories parameterized by types,
abstract datatypes, and higher order functions. A complicating factor was the use
of arrays of generic abstract datatypes such as in the definition of the receiver:

NICReceiver : Type = [#
from_nic : ARRAY[below(maxsize) → fifo [Frame]] ,
wires : ARRAY[below(maxsize) →fifo [Frame]] ,
pc : Stage,
nop : bool #]

In Java, it is not possible to declare arrays of a generic type. Instead, an Array
class is used, in which a function is defined that can construct arrays if the size
is known and an initialization function is passed. The constructed ArrayList is
subsequently cast to a regular array.

public class Array<T> {
public T [] new_array(int size ,Lambda<Integer ,T> lambda) {

ArrayList<T> array = new ArrayList<T>(size) ;
for (int i=0;i<size ;i++)
array .set(i , lambda .curry(i)) ;
return (T []) array . toArray () ; } }

The new array function is used to generate the generic lists that are needed in the
generated code.

4.4 Evaluation

The three case studies show that it is feasible to generate Java code from PVS models
for small to medium sized models. Using the models helped to improve the quality
of the generated code and to extend the Why language with several constructs that
are either syntactic sugar, such as record types, or completely new additions, such
as the notion of modules.

11

The models roughly double in size when translated into Java, as is shown in the
following table of model sizes and translation times.

PVS Java time
Conflict Detection 122 lines 282 lines 0.4s

F.T. Consensus 252 lines 657 lines 1.0s
Sliding Window 1094 lines 2162 lines 1.4s

Although the translator supports all executable language constructs that PVS
provides, some minor changes had to be made to the original models to support
translation. The changes all have to do with clashing name spaces, non-translatable
characters in identifiers and the fact that the translation requires all fields of a record
to be updated. All these issues will be resolved in the final release. Furthermore,
the generation of pre-conditions and post-conditions is still work in progress.

The case studies presented in this section should be viewed in terms of “proof of
concept.” Although several features are still missing, the case studies demonstrate
the potential for integrating heavy-weight formal methods tools into the software
development cycle.

5 Related Work

Two major fields of computer science come together in generating code from formal
specifications: theorem proving and compiler construction.

Within the theorem proving community all the major theorem provers have some
form of code generation to a functional language from their specification language.
The theorem prover Isabelle/HOL even provides two code generators. The original
generation from higher order logic to ML described by Berghofer and Nipkow [3], and
a second translator, developed by Haftmann [16], which targets multiple languages.
Unlike the generator presented here, these languages are all functional program-
ming languages like Haskell, OCaml and SML. ACL2’s [20] specification language
is a subset of Common Lisp. The theorem prover Coq [4] has a generator [24]
that extracts lambda terms and translates them in either Haskell or OCaml. As
mentioned before, PVS [31] provides a code generator for Lisp. A PVS translation
into the functional programming language Clean is in its prototype stage [17]. Us-
ing semantic attachments or analog mechanisms to tie executable code and logical
statements together has been studied by Ray in ACL [36], and by Rushby et al [7]
and Muñoz [26] in PVS.

Integrating formal methods into the software engineering process has been the
main goal of the B-method [1]: a collection of mathematically based techniques for
the specification, design and implementation of software components. The primary
departure for the method presented here is that PVS as a specification language
allows for higher order functional specification and is a more powerful theorem
prover than those that come with the B-tool suite. The added expressiveness of the
specification language allows for code generation to functional languages, unlike the
B-method where only C or ADA code can be generated.

12

A similar approach is taken with the Vienna Development Method (VDM) [18].
This also is a collection of formal methods and tools that aim at using mathematical
techniques in the software development process. It does support higher order func-
tions and can generate Java as well as C++ code. However, their code generator
uses a standard library of VDM concepts instead of translating more directly into
the target language. Both VDM and the B-method do not annotate the generated
code, which makes it harder to check whether the generated code is indeed correct.

From within the compiler construction community, work has been done on
source-to-source translators from functional languages to imperative languages: a
source code translator between Lisp and Java has been constructed by Leitao [23];
however not all language constructs of Lisp are supported. Another translator from
ML to Java was proposed by Koser et al in [21]. Instead of Java, Ada has also been
used as a target language by Tolmach [41].

6 Conclusion and Future Work

Integrating formal methods into the software engineering process requires tools that
provide support without unnecessarily constraining the design and implementation
choices. This paper presents a tool designed to generate annotated code from declar-
ative PVS specifications for multiple functional and imperative target languages.
The key features of the tool are:

• Independently verifiable code: The generated code is accompanied by anno-
tations that allow for proof obligation generation.

• The generated code is readable and it allows for integration with existing
code.

• The generated code is reasonably efficient due to the nature of the translation
from an executable subset as well as by using destructive update optimization
techniques. Since an intermediate language is used, further optimizations such
as tail recursion elimination can be easily added.

The code generator presented in this paper is only a proof of concept. Many
features have to be improved to be deployable in a large scale software engineering
process. For example, currently, only a subset of the specification language of PVS
can be translated. One feature that limits the applicability of the code generation
process is that many models are only partially executable. In particular, formal
models of protocols typically use a relational specification style to describe functional
behaviors. These models cannot directly be translated into an executable program.
Being able to generate code for these models, by providing syntactic restrictions
on their specification, is one of the next goals. For this, support for guarded non-
determinism is needed.

In the spirit of proof carrying code [30], another venue of progress would be to
extend the Why logic and the extraction mechanism so that annotated programs
carry with them a reference to the correctness lemmas in the original specification
and enough information for discharging the proof obligations from these lemmas.

13

This will eliminate most of the burden of mechanically proving the correctness of
the generated code.

It is recognized that all the individual elements are not original by themselves,
as demonstrated by the related work. However, it is believed that tying them all
together in a complete package and targeting both functional and imperative lan-
guages, is an important, and needed, contribution in the area of code generation
from proof assistants.

References

1. Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings. Cam-
bridge University Press, 1996.

2. Roger Bailey, Robert Hostetler, Kevin Barnes, Celeste Belcastro, and Christine
Belcastro. Experimental validation subscale aircraft ground facilities and inte-
grated test capability. In Proceedings of the AIAA Guidance Navigation, and
Control Conference and Exhibit 2005, San Francisco, California, 2005.

3. Stefan Berghofer and Tobias Nipkow. Executing higher order logic. In
P. Callaghan, Z. Luo, J. McKinna, and R. Pollack, editors, Types for Proofs
and Programs (TYPES 2000), volume 2277 of LNCS, pages 24–40. Springer,
2002.

4. Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions. Texts in The-
oretical Computer Science. Springer Verlag, 2004.

5. Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joseph Kiniry, Gary
Leavens, Rustan Leino, and Erik Poll. An overview of JML tools and applica-
tions. Int. J. Softw. Tools Technol. Transf., 7(3):212–232, 2005.

6. Ricky Butler and César Muñoz. A formal framework for the analysis of algo-
rithms that recover from loss of separation. Technical Memorandum NASA/TM-
2008-215356, NASA, Langley Research Center, Hampton VA 23681-2199, USA,
2008.

7. Judy Crow, Sam Owre, John Rushby, Natarajan Shankar, and David Stringer-
Calvert. Evaluating, testing, and animating PVS specifications. Techni-
cal report, Computer Science Laboratory, SRI International, Menlo Park,
CA, March 2001. Available at http://www.csl.sri.com/users/rushby/
abstracts/attachments.

8. Gilles Dowek, Alfons Geser, and César Muñoz. Tactical conflict detection and
resolution in a 3-D airspace. In Proceedings of the 4th USA/Europe Air Traffic
Management R&DSeminar, ATM 2001, Santa Fe, New Mexico, 2001. A long
version appears as report NASA/CR-2001-210853 ICASE Report No. 2001-7.

14

9. Gilles Dowek and César Muñoz. Conflict detection and resolution for 1,2,...,N
aircraft. In Proceedings of the 7th AIAA Aviation, Technology, Integration, and
Operations Conference, AIAA-2007-7737, Belfast, Northern Ireland, 2007.

10. Jean-Christophe Filliâtre. Verification of Non-Functional Programs using Inter-
pretations in Type Theory. Journal of Functional Programming, 13(4):709–745,
July 2003.

11. Jean-Christophe Filliâtre and Claude Marché. The Why/Krakatoa/Caduceus
platform for deductive program verification. In Werner Damm and Holger Her-
manns, editors, CAV, volume 4590 of Lecture Notes in Computer Science, pages
173–177. Springer, 2007.

12. Jean-Christophe Fillitre. Why: a multi-language multi-prover verification tool.
Research Report 1366, LRI, Universit Paris Sud, March 2003.

13. Jean-Christophe Fillitre and Claude March. Multi-prover verification of C pro-
grams. In International Conference on Formal Engineering Methods (ICFEM),
volume 3308 of Lecture Notes in Computer Science, pages 15–29. Springer Ver-
lag, November 2004.

14. Mohamed Gouda. Elements of Network Protocols. Wiley-Interscience, 1998.

15. Mohamed Gouda and Nicholas Multari. Stabilizing communication protocols.
IEEE Transactions on Computers, 40(4):448–458, 1991.

16. Florian Haftmann and Tobias Nipkow. A code generator framework for Is-
abelle/HOL. In Klaus Schneider and Jens Brandt, editors, Theorem Proving in
Higher Order Logics: Emerging Trends Proceedings, number 364/07, 08 2007.

17. Bart Jacobs, Sjaak Smetsers, and Ronny Wichers Schreur. Code-carrying the-
ories. Formal Asp. Comput., 19(2):191–203, 2007.

18. Cliff Jones. Systematic Software Development using VDM (second edition).
Prentice Hall, 1990.

19. Matt Kaufmann and J Strother Moore. ACL2: An industrial strength version of
Nqthm. In Compass’96: Eleventh Annual Conference on Computer Assurance,
page 23, Gaithersburg, Maryland, 1996. National Institute of Standards and
Technology.

20. Matt Kaufmann, J. Strother Moore, and Panagiotis Manolios. Computer-Aided
Reasoning: An Approach. Kluwer Academic Publishers, Norwell, MA, USA,
2000.

21. Justin Koser, Haakon Larsen, and Jeffrey Vaughan. SML2Java: a source to
source translator. In In Proceedings of DP-Cool, PLI03, Uppsala,Sweden, 2003.

22. Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals
problem. ACM Transactions on Programming Languages and Systems, 4:382–
401, July 1982.

15

23. Antonio Menezes Leitao. Migration of Common Lisp programs to the Java
platform -the Linj approach. In CSMR ’07: Proceedings of the 11th European
Conference on Software Maintenance and Reengineering, pages 243–251, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

24. Pierre Letouzey. A New Extraction for Coq. In Herman Geuvers and Freek
Wiedijk, editors, Types for Proofs and Programs, Second International Work-
shop, TYPES 2002, Berg en Dal, The Netherlands, April 24-28, 2002, volume
2646 of Lecture Notes in Computer Science. Springer-Verlag, 2003.

25. Paul Miner, Alfons Geser, Lee Pike, and Jeffrey Maddalon. A unified fault-
tolerant protocol. In Y. Lakhnech and S. Yovine, editors, FORMATS/FTRTFT,
Lecture Notes in Computer Science 3253, pages 167–182, 2004.

26. César Muñoz. Rapid prototyping in PVS. Contrator Report NIA 2003-03,
NASA/CR-2003-212418, NIA-NASA Langley, National Institute of Aerospace,
Hampton, VA, May 2003.

27. César Muñoz, Vı́ctor Carreño, and Gilles Dowek. Formal analysis of the op-
erational concept for the Small Aircraft Transportation System. In Rigorous
Engineering of Fault-Tolerant Systems, volume 4157 of Lecture Notes in Com-
puter Science, pages 306–325, 2006.

28. César Muñoz, Vı́ctor Carreño, Gilles Dowek, and Ricky Butler. Formal verifi-
cation of conflict detection algorithms. International Journal on Software Tools
for Technology Transfer, 4(3):371–380, 2003.

29. César Muñoz and Alwyn Goodloe. Design and verification of a distibuted com-
munication protocol. Technical Report NASA/CR-2009-215703, National Aero-
nautics and Space Administration, 2008.

30. George Necula. Proof-Carrying Code. In Proceedings of 24th Symposium on
Principles of Programming Languages (POPL97), pages 106–119. ACM Press,
1997.

31. Sam Owre, John Rushby, and Natarajan Shankar. PVS: A prototype verification
system. In Deepak Kapur, editor, 11th International Conference on Automated
Deduction (CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages
748–752, Saratoga, NY, jun 1992. Springer-Verlag.

32. Sam Owre, John Rushby, Natarajan Shankar, and David Stringer-Calvert. PVS:
an experience report. In Dieter Hutter, Werner Stephan, Paolo Traverso, and
Markus Ullman, editors, Applied Formal Methods—FM-Trends 98, volume 1641
of Lecture Notes in Computer Science, pages 338–345, Boppard, Germany, oct
1998. Springer-Verlag.

33. Corina Pasareanu, Peter Mehlitz, David Bushnell, Karen Gundy-Burlet,
Michael Lowry, Suzette Person, and Mark Pape. Combining Unit-Level Sym-
bolic Execution and System-Level Concrete Execution for Testing NASA Soft-

16

ware. In International Symposium on Software Testing and Analysis, pages
15–26. ACM Press, 2008.

34. Christine Paulin-Mohring and Benjamin Werner. Synthesis of ML programs in
the system Coq. J. Symb. Comput, 15(5/6):607–640, 1993.

35. Lee Pike, Jeffrey Maddalon, Paul Miner, and Alfons Geser. Abstractions for
fault-tolerant distributed system verification. In Theorem Proving in Higher-
Order Logics, Lecture Notes in Computer Science 3223, pages 257–270. Springer-
Verlag, 2004.

36. Sandip Ray. Attaching Efficient Executability to Partial Functions in ACL2.
In M. Kaufmann and J S. Moore, editors, Fifth International Workshop on the
ACL2 Theorem Prover and Its Applications (ACL2-2004), Austin, TX, Novem-
ber 2004.

37. John Rushby, Sam Owre, and Natarajan Shankar. Subtypes for specifications:
Predicate subtyping in PVS. IEEE Transactions on Software Engineering,
24(9):709–720, sep 1998.

38. John Rushby and Friedrich von Henke. Formal verification of algorithms for
critical systems. IEEE Transactions on Software Engineering, 19(1):13–23, jan
1993.

39. Natarajan Shankar. Efficiently executing PVS. Technical report, Menlo Park,
CA, 1999.

40. Natarajan Shankar. Static analysis for safe destructive updates in a functional
language. In 11th International Workshop on Logic-based Program Synthesis
and Transformation (LOPSTR 01), volume 2372 of Lecture Notes in Computer
Science, pages 1–24. Springer-Verlag, 2002.

41. Andrew Tolmach and Dino Oliva. From ML to Ada: Strongly-typed language
interoperability via source translation. Journal of Functional Programming,
8(4):367–412, 1998.

42. Wendi Urribarŕı. A module system for Why. Manuscript, Personal Communi-
cation, 2008.

43. John Wordsworth. Software Development with Z. Addison-Wesley, 1992.

17

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

1. REPORT DATE (DD-MM-YYYY)
01-06-2009

2. REPORT TYPE

Technical Memorandum
3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

From Verified Models to Verifiable Code

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
015792-04-01-0423

6. AUTHOR(S)

Leonard Lensink, César A. Muñoz, Alwyn Goodloe

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, Virginia 23681-2199

8. PERFORMING ORGANIZATION
REPORT NUMBER

L–00000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSOR/MONITOR’S ACRONYM(S)
NASA

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

NASA/TM–2009–000000

12. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited
Subject Category 61
Availability: NASA CASI (443) 757-5802

13. SUPPLEMENTARY NOTES

An electronic version can be found at http://ntrs.nasa.gov.

14. ABSTRACT

Declarative specifications of digital systems often contain parts that can be automatically translated into executable code.
Automated code generation may reduce or eliminate the kinds of errors typically introduced through manual code writing.
For this approach to be effective, the generated code should be reasonably efficient and, more importantly, verifiable. This
paper presents a prototype code generator for the Prototype Verification System (PVS) that translates a subset of PVS
functional specifications into an intermediate language and subsequently to multiple target programming languages. Several
case studies are presented to illustrate the tool’s functionality. The generated code can be analyzed by software verification
tools such as verification condition generators, static analyzers, and software model-checkers to increase the confidence that
the generated code is correct.

15. SUBJECT TERMS

Code extraction; Functional specification; Prototype Verification System; Software verification; Formal methods

16. SECURITY CLASSIFICATION OF:

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF
PAGES

0

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

19b. TELEPHONE NUMBER (Include area code)

(443) 757-5802

